WO2024194848 - COMPUTER IMPLEMENTED SYSTEMS AND METHODS OF ADDITION OF NUMBERS REPRESENTED IN A LOGARITHMIC NUMBER SYSTEM
National phase entry is expected:
Publication Number
WO/2024/194848
Publication Date
26.09.2024
International Application No.
PCT/IB2024/052784
International Filing Date
22.03.2024
Title **
[English]
COMPUTER IMPLEMENTED SYSTEMS AND METHODS OF ADDITION OF NUMBERS REPRESENTED IN A LOGARITHMIC NUMBER SYSTEM
[French]
SYSTÈMES MIS EN OEUVRE PAR ORDINATEUR ET PROCÉDÉS D'AJOUT DE NOMBRES REPRÉSENTÉS DANS UN SYSTÈME DE NOMBRES LOGARITHMIQUES
Applicants **
LEMURIAN LABS INC.
2460 Prince Michael Drive, Suite 39
Oakville, Ontario L6H 0G8, CA
Inventors
DIMITROV, Vassil
54 Sierra Nevada Green SW
Calgary, Alberta T3H 3R1, CA
DAWANI, Sanjay
#39 - 2460 Prince Michael Drive
Oakville, Ontario L6G 0G8, CA
Priority Data
63/491,601
22.03.2023
US
Application details
| Total Number of Claims/PCT | * |
| Number of Independent Claims | * |
| Number of Priorities | * |
| Number of Multi-Dependent Claims | * |
| Number of Drawings | * |
| Pages for Publication | * |
| Number of Pages with Drawings | * |
| Pages of Specification | * |
| * | |
| * | |
International Searching Authority |
CIPO
* |
| Applicant's Legal Status |
Legal Entity
* |
| * | |
| * | |
| * | |
| * | |
| Entry into National Phase under |
Chapter I
* |
| Translation |
|
Recalculate
* The data is based on automatic recognition. Please verify and amend if necessary.
** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.
Quotation for National Phase entry
| Country | Stages | Total | |
|---|---|---|---|
| China | Filing | 1410 | |
| EPO | Filing, Examination | 9111 | |
| Japan | Filing | 535 | |
| South Korea | Filing | 576 | |
| USA | Filing, Examination | 3635 |

Total: 15267 USD
The term for entry into the National Phase has expired. This quotation is for informational purposes only
Abstract[English]
A computer-implemented method of addition of real numbers represented in a multidimensional logarithmic number system (MDLNS) includes representing two real numbers X and Y in an MDLNS, wherein the MDLNS representations of X and Y includes at least two bases B1 and B2, as follows: X=s1*(B1^a)*(B2^b), and Y=s2*(B1^c)*(B2^d). Wherein s1 and s2 are each a sign of value plus or minus one, and wherein a, b, c and d are exponents. A condition is imposed on the signs of the exponents wherein: a is positive, b is negative, c is negative and d is positive. The representation of the sum of X+Y in the log domain is expanded as follows: log (X+Y) = log (s1*(B1^a)*(B2^b) + s2*(B1^c)*(B2^d)) = log (s1*(B1^a*B2^d)*(B2^(b-d) + (s2/s1)*B1^(c- a))), wherein (b-d) is a negative exponent and (c-a) is a negative exponent.[French]
Un procédé mis en oeuvre par ordinateur d'ajout de nombres réels représentés dans un système de nombres logarithmiques multidimensionnel (MDLNS) consiste à représenter deux nombres réels X et Y dans un MDLNS, les représentations MDLNS de X et Y comprenant au moins deux bases B1 et B2, comme suit : X=s1*(B1^a)*(B2^b), et Y=s2*(B1^c)*(B2^d). S1 et S2 sont chacun un signe de valeur plus ou moins un, et a, b, c et d sont des exposants. Une condition est imposée aux signes des exposants, : a étant positif, b étant négatif, c étant négatif et d étant positif. La représentation de la somme de X + Y dans le domaine logarithmique est développée comme suit : log (X+Y) = log (s1*(B1^a)*(B2^b) + s2*(B1^c)*(B2^d)) = log (s1*(B1^a*B2^d)*(B2^(b-d) + (s2/s1)*B1^(c- a))), (b-d) étant un exposant négatif et (c-a) étant un exposant négatif.