WO2024194848 - COMPUTER IMPLEMENTED SYSTEMS AND METHODS OF ADDITION OF NUMBERS REPRESENTED IN A LOGARITHMIC NUMBER SYSTEM

National phase entry is expected:
Publication Number WO/2024/194848
Publication Date 26.09.2024
International Application No. PCT/IB2024/052784
International Filing Date 22.03.2024
Title **
[English] COMPUTER IMPLEMENTED SYSTEMS AND METHODS OF ADDITION OF NUMBERS REPRESENTED IN A LOGARITHMIC NUMBER SYSTEM
[French] SYSTÈMES MIS EN OEUVRE PAR ORDINATEUR ET PROCÉDÉS D'AJOUT DE NOMBRES REPRÉSENTÉS DANS UN SYSTÈME DE NOMBRES LOGARITHMIQUES
Applicants **
LEMURIAN LABS INC. 2460 Prince Michael Drive, Suite 39 Oakville, Ontario L6H 0G8, CA
Inventors
DIMITROV, Vassil 54 Sierra Nevada Green SW Calgary, Alberta T3H 3R1, CA
DAWANI, Sanjay #39 - 2460 Prince Michael Drive Oakville, Ontario L6G 0G8, CA
Priority Data
63/491,601   22.03.2023   US
front page image
Application details
Total Number of Claims/PCT *
Number of Independent Claims *
Number of Priorities *
Number of Multi-Dependent Claims *
Number of Drawings *
Pages for Publication *
Number of Pages with Drawings *
Pages of Specification *
*
*
International Searching Authority
*
Applicant's Legal Status
*
*
*
*
*
Entry into National Phase under
*
Translation

Recalculate

* The data is based on automatic recognition. Please verify and amend if necessary.

** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.

Quotation for National Phase entry

Country StagesTotal
China Filing1410
EPO Filing, Examination9111
Japan Filing535
South Korea Filing576
USA Filing, Examination3635
MasterCard Visa

Total: 15267

The term for entry into the National Phase has expired. This quotation is for informational purposes only

Abstract[English] A computer-implemented method of addition of real numbers represented in a multidimensional logarithmic number system (MDLNS) includes representing two real numbers X and Y in an MDLNS, wherein the MDLNS representations of X and Y includes at least two bases B1 and B2, as follows: X=s1*(B1^a)*(B2^b), and Y=s2*(B1^c)*(B2^d). Wherein s1 and s2 are each a sign of value plus or minus one, and wherein a, b, c and d are exponents. A condition is imposed on the signs of the exponents wherein: a is positive, b is negative, c is negative and d is positive. The representation of the sum of X+Y in the log domain is expanded as follows: log (X+Y) = log (s1*(B1^a)*(B2^b) + s2*(B1^c)*(B2^d)) = log (s1*(B1^a*B2^d)*(B2^(b-d) + (s2/s1)*B1^(c- a))), wherein (b-d) is a negative exponent and (c-a) is a negative exponent.[French] Un procédé mis en oeuvre par ordinateur d'ajout de nombres réels représentés dans un système de nombres logarithmiques multidimensionnel (MDLNS) consiste à représenter deux nombres réels X et Y dans un MDLNS, les représentations MDLNS de X et Y comprenant au moins deux bases B1 et B2, comme suit : X=s1*(B1^a)*(B2^b), et Y=s2*(B1^c)*(B2^d). S1 et S2 sont chacun un signe de valeur plus ou moins un, et a, b, c et d sont des exposants. Une condition est imposée aux signes des exposants, : a étant positif, b étant négatif, c étant négatif et d étant positif. La représentation de la somme de X + Y dans le domaine logarithmique est développée comme suit : log (X+Y) = log (s1*(B1^a)*(B2^b) + s2*(B1^c)*(B2^d)) = log (s1*(B1^a*B2^d)*(B2^(b-d) + (s2/s1)*B1^(c- a))), (b-d) étant un exposant négatif et (c-a) étant un exposant négatif.
An error has occurred. This application may no longer respond until reloaded. Reload 🗙