WO2024201122 - GENERATING HEURISTICS USING WEAKLY-SUPERVISED MACHINE LEARNING AND DIGITAL TWIN SIMULATIONS
National phase entry is expected:
Publication Number
WO/2024/201122
Publication Date
03.10.2024
International Application No.
PCT/IB2023/056499
International Filing Date
23.06.2023
Title **
[English]
GENERATING HEURISTICS USING WEAKLY-SUPERVISED MACHINE LEARNING AND DIGITAL TWIN SIMULATIONS
[French]
GÉNÉRATION D'HEURISTIQUES EN UTILISANT L'APPRENTISSAGE MACHINE FAIBLEMENT SUPERVISÉ ET DES SIMULATIONS DE JUMEAU NUMÉRIQUE
Applicants **
NEC LABORATORIES EUROPE GMBH
Kurfuersten-Anlage 36
69115 Heidelberg, DE
Inventors
SOLMAZ, Gurkan
c/o NEC Laboratories Europe GmbH
Kurfuersten-Anlage 36
69115 Heidelberg, DE
CIRILLO, Flavio
c/o NEC Laboratories Europe GmbH
Kurfuersten-Anlage 36
69115 Heidelberg, DE
Priority Data
63/454,977
28.03.2023
US
Application details
| Total Number of Claims/PCT | * |
| Number of Independent Claims | * |
| Number of Priorities | * |
| Number of Multi-Dependent Claims | * |
| Number of Drawings | * |
| Pages for Publication | * |
| Number of Pages with Drawings | * |
| Pages of Specification | * |
| * | |
| * | |
International Searching Authority |
EPO
* |
| Applicant's Legal Status |
Legal Entity
* |
| * | |
| * | |
| * | |
| * | |
| Entry into National Phase under |
Chapter I
* |
| Translation |
|
Recalculate
* The data is based on automatic recognition. Please verify and amend if necessary.
** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.
Quotation for National Phase entry
| Country | Stages | Total | |
|---|---|---|---|
| China | Filing | 1152 | |
| EPO | Filing, Examination | 4823 | |
| Japan | Filing | 535 | |
| South Korea | Filing | 576 | |
| USA | Filing, Examination | 2635 |

Total: 9721 USD
The term for entry into the National Phase has expired. This quotation is for informational purposes only
Abstract[English]
A computer-implemented method for generating and/or adjusting a heuristic function for a machine learning prediction. A machine learning prediction task including a target entity and attribute is received. Semantic relations are explored to generate relevant entities and attributes related to the target entity and attribute. The heuristic function is generated and/or adjusted based on the relevant entities and attributes.[French]
L'invention concerne un procédé mis en œuvre par ordinateur pour générer et/ou ajuster une fonction heuristique pour une prédiction d'apprentissage automatique. Une tâche de prédiction d'apprentissage automatique comprenant une entité cible et un attribut est reçue. Des relations sémantiques sont explorées pour générer des entités et des attributs pertinents associés à l'entité cible et à l'attribut. La fonction heuristique est générée et/ou ajustée sur la base des entités et attributs pertinents.