WO2024201122 - GENERATING HEURISTICS USING WEAKLY-SUPERVISED MACHINE LEARNING AND DIGITAL TWIN SIMULATIONS

National phase entry is expected:
Publication Number WO/2024/201122
Publication Date 03.10.2024
International Application No. PCT/IB2023/056499
International Filing Date 23.06.2023
Title **
[English] GENERATING HEURISTICS USING WEAKLY-SUPERVISED MACHINE LEARNING AND DIGITAL TWIN SIMULATIONS
[French] GÉNÉRATION D'HEURISTIQUES EN UTILISANT L'APPRENTISSAGE MACHINE FAIBLEMENT SUPERVISÉ ET DES SIMULATIONS DE JUMEAU NUMÉRIQUE
Applicants **
NEC LABORATORIES EUROPE GMBH Kurfuersten-Anlage 36 69115 Heidelberg, DE
Inventors
SOLMAZ, Gurkan c/o NEC Laboratories Europe GmbH Kurfuersten-Anlage 36 69115 Heidelberg, DE
CIRILLO, Flavio c/o NEC Laboratories Europe GmbH Kurfuersten-Anlage 36 69115 Heidelberg, DE
Priority Data
63/454,977   28.03.2023   US
front page image
Application details
Total Number of Claims/PCT *
Number of Independent Claims *
Number of Priorities *
Number of Multi-Dependent Claims *
Number of Drawings *
Pages for Publication *
Number of Pages with Drawings *
Pages of Specification *
*
*
International Searching Authority
*
Applicant's Legal Status
*
*
*
*
*
Entry into National Phase under
*
Translation

Recalculate

* The data is based on automatic recognition. Please verify and amend if necessary.

** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.

Quotation for National Phase entry

Country StagesTotal
China Filing1152
EPO Filing, Examination4823
Japan Filing535
South Korea Filing576
USA Filing, Examination2635
MasterCard Visa

Total: 9721

The term for entry into the National Phase has expired. This quotation is for informational purposes only

Abstract[English] A computer-implemented method for generating and/or adjusting a heuristic function for a machine learning prediction. A machine learning prediction task including a target entity and attribute is received. Semantic relations are explored to generate relevant entities and attributes related to the target entity and attribute. The heuristic function is generated and/or adjusted based on the relevant entities and attributes.[French] L'invention concerne un procédé mis en œuvre par ordinateur pour générer et/ou ajuster une fonction heuristique pour une prédiction d'apprentissage automatique. Une tâche de prédiction d'apprentissage automatique comprenant une entité cible et un attribut est reçue. Des relations sémantiques sont explorées pour générer des entités et des attributs pertinents associés à l'entité cible et à l'attribut. La fonction heuristique est générée et/ou ajustée sur la base des entités et attributs pertinents.
An error has occurred. This application may no longer respond until reloaded. Reload 🗙