WO2024187483 - METHODS, APPARATUS AND MEDIUM FOR TRAINING AN ARTICIFICAL INTELLIGENCE OR MACHINE LEARNING MODEL
National phase entry is expected:
Publication Number
WO/2024/187483
Publication Date
19.09.2024
International Application No.
PCT/CN2023/082019
International Filing Date
16.03.2023
Title **
[English]
METHODS, APPARATUS AND MEDIUM FOR TRAINING AN ARTICIFICAL INTELLIGENCE OR MACHINE LEARNING MODEL
[French]
PROCÉDÉS, APPAREIL ET SUPPORT D'APPRENTISSAGE D'UN MODÈLE D'INTELLIGENCE ARTIFICIELLE OU D'APPRENTISSAGE AUTOMATIQUE
Applicants **
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Administration Building
Bantian, Longgang District
Shenzhen, Guangdong 518129, CN
Inventors
TANG, Hao
Suite 400, 303 Terry Fox Drive
Kanata
Ottawa, Ontario 231, CA
CAVATASSI, Adam Christian
Suite 400, 303 Terry Fox Drive
Kanata
Ottawa, Ontario 231, CA
GE, Yiqun
Suite 400, 303 Terry Fox Drive
Kanata
Ottawa, Ontario 231, CA
ZHANG, Liqing
Suite 400, 303 Terry Fox Drive
Kanata
Ottawa, Ontario 231, CA
MA, Jianglei
Suite 400, 303 Terry Fox Drive
Kanata
Ottawa, Ontario 231, CA
Application details
| Total Number of Claims/PCT | * |
| Number of Independent Claims | * |
| Number of Priorities | * |
| Number of Multi-Dependent Claims | * |
| Number of Drawings | * |
| Pages for Publication | * |
| Number of Pages with Drawings | * |
| Pages of Specification | * |
| * | |
| * | |
International Searching Authority |
CNIPA
* |
| Applicant's Legal Status |
Legal Entity
* |
| * | |
| * | |
| * | |
| * | |
| Entry into National Phase under |
Chapter I
* |
| Translation |
|
Recalculate
* The data is based on automatic recognition. Please verify and amend if necessary.
** IP-Coster compiles data from publicly available sources. If this data includes your personal information, you can contact us to request its removal.
Quotation for National Phase entry
| Country | Stages | Total | |
|---|---|---|---|
| China | Filing | 4440 | |
| EPO | Filing, Examination | 79608 | |
| Japan | Filing | 531 | |
| South Korea | Filing | 482 | |
| USA | Filing, Examination | 27285 |

Total: 112346 USD
The term for entry into the National Phase has expired. This quotation is for informational purposes only
Abstract[English]
Aspects of the present disclosure provide methods and apparatuses for training an artificial intelligence or machine learning (AI/ML) model to support deep neural network (DNN) -based applications and DNN-based services in a communication network. According to some embodiments, a user equipment (UE) may receive, from a base station (BS), training configuration information for a learning block comprising one or more successive layers of the AI/ML model. The learning block may include a subset of less than all layers of the AI/ML model. The UE may determine the learning block using the training configuration information. The UE may train the AI/ML model or the learning block using the training configuration information. The UE may transmit, to the BS, one or more parameters associated with the learning block.[French]
Des aspects de la présente divulgation concernent des procédés et des appareils pour entraîner un modèle d'intelligence artificielle ou d'apprentissage automatique (IA/ML) pour prendre en charge des applications basées sur un réseau neuronal profond (RNP) et des services basés sur un RNP dans un réseau de communication. Selon certains modes de réalisation, un équipement utilisateur (UE) peut recevoir, en provenance d'une station de base (BS), des informations de configuration d'apprentissage pour un bloc d'apprentissage comprenant une ou plusieurs couches successives du modèle d'IA/ML. Le bloc d'apprentissage peut comprendre un sous-ensemble comprenant moins de couches que toutes les couches du modèle d'IA/ML. L'UE peut déterminer le bloc d'apprentissage à l'aide des informations de configuration d'apprentissage. L'UE peut entraîner le modèle d'IA/ML ou le bloc d'apprentissage à l'aide des informations de configuration d'apprentissage. L'UE peut transmettre, à la BS, un ou plusieurs paramètres associés au bloc d'apprentissage.